Активная компенсация реактивной мощности

Содержание:

Компенсация реактивной мощности у потребителей

Для перемещения электрической энергии от мест производства до мест потребления не используются другие ресурсы, используется часть самой передаваемой энергии, поэтому ее потери неизбежны, задача состоит в определении их экономически обоснованного уровня. Снижение потерь электроэнергии — одна из задач энергосбережения. Классификация потерь включает в себя четыре составляющие.

1. Технические потери электроэнергии, обусловленные физическими процессами, происходящими при передаче электроэнергии по электрическим сетям и выражающимися в преобразовании части электроэнергии в тепло в элементах сетей.

2. Расход электроэнергии на собственные нужды, необходимый для работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала.

3. Инструментальные потери, определяются метрологическими характеристиками и режимами работы используемых приборов.

4. Коммерческие потери, обусловлены несоответствием показаний счетчиков оплате за электроэнергию потребителями и другими причинами в сфере организации контроля за потреблением энергии (т.е., в первую очередь, воровством).

Нагрузочные потери активной мощности в элементе сети с сопротивлением R при напряжении U определяются по формуле:

В большинстве случаев значение P (активная мощность) и Q (реактивная мощность) на элементах сети изначально неизвестны. Как правило, известны нагрузки в узлах сети (на подстанциях). Значения данных величин определяются посредством измерений по нормативным методикам, позволяющим определить данные параметры для различных периодов нагрузок — сезонных минимумов и максимумов.

Из формулы видно, что для снижения потерь мощности важно проводить мероприятия по уменьшению или ограничению потребления реактивной мощности потребителями.

В электрических цепях, содержащих комбинированную нагрузку, в частности, активную (лампы накаливания, электронагреватели и др.) и индуктивную (электродвигатели, распределительные трансформаторы, сварочное оборудование, люминесцентные лампы и др.) общую мощность, забираемую от сети, можно выразить следующей векторной диаграммой:

Рис. 9.3. Диаграмма потребления мощности

Отставание тока по фазе от напряжения в индуктивных элементах обуславливает интервалы времени, когда напряжение и ток имеют противоположные знаки: напряжение положительно, а ток отрицателен и наоборот. В эти моменты мощность не потребляется нагрузкой, а подается обратно по сети в сторону генератора. При этом электроэнергия, запасаемая в каждом индуктивном элементе, распространяется по сети, не рассеиваясь в активных элементах, а совершая колебательные движения (от нагрузки к генератору и обратно). Соответствующую мощность называют реактивной.

Рис. 9.4. Диаграмма активной и реактивной мощности

Полная мощность складывается из активной мощности, совершающей полезную работу, и реактивной мощности, расходуемой на создание магнитных полей и создающей дополнительную нагрузку на силовые линии питания. Соотношение между полной и активной мощностью, выраженное через косинус угла между их векторами, называется коэффициентом (фактором) мощности.

Активная энергия преобразуется в полезную — механическую, тепловую и др. энергии. Реактивная энергия не связана с выполнением полезной работы, однако она необходима для создания электромагнитного поля, наличие которого является необходимым условием для работы электродвигателей и трансформаторов. Потребление реактивной мощности от энергоснабжающей организации нецелесообразно, т.к. приводит к увеличению мощности генераторов, трансформаторов, сечения подводящих кабелей, а так же повышению активных потерь и падению напряжения. Поэтому реактивную мощность необходимо получать (генерировать) непосредственно у потребителя. Эту функцию выполняют установки компенсации реактивной мощности (КРМ), основными элементами которых являются конденсаторы.

Реактивная мощность при этом уже не перемещается между генератором и нагрузкой, а совершает локальные колебания между реактивными элементами — индуктивными обмотками нагрузки и компенсатором. Такая компенсация реактивной мощности (снижение индуктивного тока в системе «генератор — нагрузка») позволяет, в частности, передать в нагрузку большую активную мощность при той же номинальной полной мощности генератора.

Наиболее эффективно проводить компенсацию реактивной мощности непосредственно у потребителя, но это процесс достаточно долгий и дорогостоящий. Для получения более быстрого ощутимого результата на первом этапе необходимо провести компенсацию реактивной мощности на подстанциях, что позволит разгрузить сеть и получить энергосбережение в пределах 10-20%. Предварительно, на подстанциях в сетях 0,4 кВ необходимо выравнивание нагрузок фаз, которое производится путем переключения части абонентов с перегруженных фаз на недогруженные.

На уровне отдельных непромышленных потребителей, особенно в жилых домах с однофазной нагрузкой, выравнивание фаз таким способом произвести нельзя из-за непрерывно меняющейся величины и характера нагрузки. Поэтому компенсация реактивной мощности на объектах должна производиться на каждой отдельной фазе. При этом в каждом случае должны учитываться гармонические составляющие, при необходимости устройства по компенсации реактивной мощности должны иметь фильтры с автоматическим регулированием емкости. В данном случае важно правильно произвести подбор фильтро-компенсирующего устройства (ФКУ).

Таким образом, для решения задачи по КРМ необходимо проводить работу в несколько этапов.

  • 1. Централизованная (грубая) компенсация, которая проводится на подстанциях и включает в себя проведение мониторинга показателей качества электроэнергии, выравнивание фаз, фильтрацию тока и установку КРМ.
  • 2. Индивидуальная (точечная) компенсация проводится на уровне каждой квартиры или параллельно нагрузке, посредством подключения установок КРМ (косинусных конденсаторов небольшой емкости). Данное мероприятие позволяет обеспечить синусоидальность тока, тем самым значительно уменьшая технические потери. Такие же мероприятия должны проводиться и внутри электроустановок зданий.

Хотя основными потребителями индуктивной мощности являются промышленные и производственные предприятия, на которых индуктивная мощность необходима для работы понижающих трансформаторов, асинхронных двигателей, электросварочного оборудования, индукционных печей и др., но нельзя сбрасывать со счетов и непромышленные объекты. Т.к. в настоящее время наблюдается увеличение потребления индукционной мощности в социально-бытовой сфере за счет увеличения числа различных электроприводов, стабилизирующих и преобразовательных устройств. Применение полупроводниковых преобразователей приводит к ухудшению формы кривой тока, что ухудшает работу других электроприемников, сокращает срок их службы, создает дополнительные потери электроэнергии. Современные люминесцентные светильники, все шире применяемые в квартирах и офисах, для продажи в России комплектуются дешевыми китайскими конденсаторами, срок службы которых обычно составляет несколько часов. Косинус φ у таких источников света составляет менее 0,5.

Нормативы уровня компенсации реактивной мощности изначально определены в «Инструкции по проектированию городских электрических сетей» (РД 34.20.185-94, последние изменения и дополнения внесены и утверждены Приказом Минтопэнерго РФ от 29.06.99 № 213.), где определены расчетные коэффициенты реактивной мощности жилых домов:

Для чего нужна компенсация реактивной мощности

Реактивная мощность и энергия ухудшают показатели работы энергосистемы , то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках, увеличивается падение напряжения в сетях.

Реактивный ток дополнительно нагружает линии электропередачи , что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети.

Компенсация реактивной мощности , в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает величину порядка 30-40% в стоимости продукции. Это достаточно веский аргумент, чтобы руководителю со всей серьезностью подойти к анализу и аудиту энергопотребления и выработке методики компенсации реактивной мощности . Компенсация реактивной мощности – вот ключ к решению вопроса энергосбережения.

Потребители реактивной мощности

Основные потребители реактивной мощности — асинхронные электродвигатели, которые потребляют 40 % всей мощности совместно с бытовыми и собственными нуждами; электрические печи 8 %; преобразователи 10 %; трансформаторы всех ступеней трансформации 35 %; линии электропередач 7 %.

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а косинус фи уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40 .

Малонагруженные трансформаторы также имеют низкий коэффициент мощности (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии , а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Структура потребителей реактивной мощности в сетях энергосистем (по установленной активной мощности):

Прочие преобразователи: переменного тока в постоянный, тока промышленной частоты в ток повышенной или пониженной частоты, печная нагрузка (индукционные печи, дуговые сталеплавильные печи), сварка (сварочные трансформаторы, агрегаты, выпрямители, точечная, контактная).

Суммарные абсолютные и относительные потери реактивной мощности в элементах питающей сети весьма велики и достигают 50% мощности, поступающей в сеть. Примерно 70 — 75% всех потерь реактивной мощности составляют потери в трансформаторах.

Так, в трехобмоточном трансформаторе ТДТН-40000/220 при коэффициенте загрузки, равном 0,8, потери реактивной мощности составляют около 12%. На пути от электростанции происходит самое меньшее три трансформации напряжения, и поэтому потери реактивной мощности в трансформаторах и автотрансформаторах достигают больших значений.

Способы снижения потребления реактивной мощности. Компенсация реактивной мощности

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок) .

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • при использовании определенного типа установок снизить уровень высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.

Активная компенсация реактивной мощности

Конденсаторы для силовой электроники

Конденсаторы для повышения коэффициента мощности

Установки компенсации реактивной мощности 0.4кВ

Моторные и светотехнические конденсаторы

  • Реактивная мощность
  • Концепция компенсации реактивной мощности «на пальцах»

Навигация по статье:

Реактивная энергия/мощность в текущем понимании и представлении в РФ

Введение во взаиморасчеты между поставщиком и потребителем электроэнергии термина «реактивная мощность» с интеграцией в силовые сети крупных объектов помимо счетчиков активной энергии приборов учета реактивной энергии определили искаженное понимание концепции реактивной энергии/мощности, формируемое и поддерживаемое «специалистами» с недостатком образования. Текущий тренд сленга в профильных структурах — реактивную энергию считают специфическим отдельным видом электроэнергии, а реактивную мощность называют «мнимой» и даже «паразитной». Однако если с «мнимой» мощностью с достаточно большими допущениями можно согласиться, ведь реактивная мощность по факту не осуществляют полезной (с точки зрения человека, производственного процесса) работы (реактивная энергия не трансформируется в механическую, тепловую), то «паразитом» реактивную мощность считать по меньшей мере некорректно.

Реактивная энергия в сети

Упрощенно в передаче активной и реактивной энергии участвуют одни и те же электроны (и/или иные носители заряда) без «бейджиков» «активный» или «реактивный» ток, однако:

  • носители электрического заряда, проходящие через активное сопротивление R становятся активным переменным током с типовой синусоидой частоты 50 Гц, а проходящие через индуктивное (L) или емкостное (С) сопротивление – аккумулируются в них, создавая соответственно магнитное и электрическое поле, критически необходимое для работы оборудования, преобразующего активную энергию в механическую, тепловую и пр. (трансформаторы, электродвигатели и др.) и самого движения электронов активного тока.
  • мечущиеся «взад/вперед» носители заряда реактивной энергии не только «мешают проходу» электронов активной энергии, но и проходя по кабелям/оборудованию, элементам сети с активным сопротивлением обуславливают технологические потери энергии – тем большие, чем большее расстояние им приходится проходить по сети, а с учетом факта преимущественной генерации «сдвинутых по фазе» электронов генераторами электростанций эти потери становятся огромными наряду с существенным снижением пропускной способности системообразующих, питающих и распределительных сетей, а также негативным влиянием на стабильность основных параметров качества электроэнергии.

По сути, специфика накопления/возврата реактивной энергии и «противофаза» синусоид реактивного тока индуктивности и емкости определили возможность и целесообразность компенсации реактивной мощности «на местах» потребления электроэнергии. Так, при подключении емкости (конденсатора или батареи) в сегмент сети с потребляющей (накапливающей и отдающей) реактивную мощность индуктивностью в полупериод накопления реактивной энергии индуктивным сопротивлением емкость будет отдавать накопленную ранее мощность, «питая» индуктивность, а при выбросе реактивной энергии – аккумулировать ее. Т.е. перетоки реактивной мощности будут идти на участке индуктивность-емкость, а значит остальная сеть разгрузится от реактивного тока и потери энергии будут определяться длиной/сопротивлением коммутирующего участка сети.

Физический аналог перетоков реактивной энергии на примере рынка

Для более доступного понимания концепции реактивной мощности и ее компенсации можно с большими допущениями привести физический аналог торговли на огороженном рынке в снежный зимний период, если условно принять, что:

  • менеджмент этого рынка – владелец производственного объекта с цехами (точками продаж), где идут перетоки реактивной энергии;
  • заходящие на рынок покупатели – это электроны активной (полезной) энергии;
  • муниципальные дворники с лопатами, очищающими дороги от снежных завалов – носители реактивной энергии;
  • а ворота рынка – шины понижающей подстанции на границе балансовой принадлежности.

Так, при определенной пропускной способности ворот, например, в 6 человек одновременно, во время снегопада в них будут взад/вперед сновать дворники с лопатами, вынося снег на улицу «под вывоз» и обеспечивая собственно функциональность рынка, однако:

  1. чем больше человек нужно для быстрой уборки, тем меньше покупателей смогут зайти на рынок (больше перетоков реактивной мощности и меньше объем активной мощности при одном и том же сечении шин);
  2. чем больше объектов в городе/районе нужно очищать, тем меньше дворников сможет выделить муниципалитет для конкретного рынка (генерируемая/поставляемая реактивная мощность при необходимости направляется на другие объекты, в другие сети, что может обусловить дефицит и остановку оборудования);
  3. чем дальше база муниципальной службы от рынка, тем больше времени нужно на прибытие дворников и тем больше будет сметная стоимость работ за счет расходов на привозку (более высокие тарифы и коэффициенты).
Ознакомьтесь так же:  На какой счет отнести пособие по уходу за ребенком до 15 лет

В этой ситуации можно компенсировать недостатки уборки своими силами – купить лопаты и привлечь своих сотрудников (установить КРМ), однако стартовые затраты (покупка инвентаря, выделение помещения и пр.) и эксплуатационные расходы (доплата сотрудникам) для такого мероприятия должны быть экономически целесообразными для бизнеса, т.е. нужно знать динамику притока покупателей по часам в сутки, месяц, весь период, условия погоды прошлых лет и прогнозные, число людей с инвентарем, достаточное для очистки ключевых дорог и т.д.

Ключевые факторы, определяющие сложность подбора конденсаторной установки компенсации реактивной мощности.

Для грамотного подбора оптимальной конденсаторной установки переменного тока для повышения коэффициента мощности необходимо знать:

  • суточную, недельную, месячную и годовую динамику потребления реактивной мощности, что дает возможность определить «фоновый» уровень мощности, который можно «срезать» недорогой и экономичной по эксплуатационным затратам нерегулируемой КРМ, оптимальную величину мощности для компенсации, требуемый уровень контроля/управления установками, скорость реагирования КРМ для исключения рисков провалов напряжения/перенапряжений и т.д.;
  • превышение пиковых загрузок по мощности среднего показателя для определения дискретности ступеней установки по мощности;
  • наличие и мощность оборудования/устройств, определяющих гармонические искажения в сети, для исключения рисков резонанса и выхода из строя конденсаторов батарей и т.д. и т.п.

Кроме того, очень важным, как для выбора КРМ, УКРМ, УКМ, так и для расчетов экономической эффективности можно признать выбор схемы компенсации, места интеграции установки в силовую сеть, а также существующие и допустимые (для конкретного производственно-технологического процесса) отклонения напряжения, что позволит на этапе проектирования конденсаторной установки снизить или исключить риски критических провалов напряжения и перенапряжений.

Факторы, определяющие сложность расчета срока окупаемости конденсаторной установки.

Для адекватного расчета срока окупаемости необходимо:

  • иметь сводные данные об объемах нескомпенсированной реактивной мощности (из-за недостаточной дискретности ступеней, скорости срабатывания и пр.);
  • потребленной (или потребляемой по документу/расчетам) КРМ активной мощности;
  • ставке амортизационных отчислений;
  • эксплуатационных затратах на обслуживание и ремонт, в том числе с учетом гарантированных сроков эксплуатации, как установки, так и ее отдельных компонентов;
  • стоимости монтажа, прокладки коммуникаций, пуско-наладочных работ и т.д.;
  • а также о текущих/прогнозных ценах на электроэнергию, стоимости превышения лимита потребления реактивной мощности и пр.
  • подобрать конденсаторную установку переменного тока для повышения коэффициента мощности только по опросному листу или данным показаний приборов учета электроэнергии, но ее эффективность и целесообразность будет оставаться на «риске покупателя»;
  • просчитать по определенному минимальному пакету данных с использованием формул перевода удельных величин в годовые срок окупаемости КРМ, УКРМ, УКМ, однако это будет расчет самого первого приближения, а значит гарантировать результат не может ни одна команда профильных специалистов с претензиями на высокую ответственность.

Способы компенсации реактивной мощности в системах электроснабжения

Реактивной мощностью называется та доля полной мощности, которая идет на поддержание электромагнитных процессов в нагрузках, имеющих индуктивную и емкостную реактивные составляющие.

Реактивная мощность сама по себе не расходуется на выполнение какой-либо полезной работы, в отличие от активной мощности, однако наличие в проводах реактивных токов приводит к их нагреву, то есть к потерям мощности в форме тепла, что вынуждает поставщика электроэнергии все время подавать потребителю повышенную полную мощность. А между тем, в соответствии с приказом Министерства промышленности и энергетики Российской Федерации №267 от 4 октября 2005 года, реактивная мощность отнесена к техническим потерям в электрических сетях.

Но электромагнитные поля всегда возникают в нормальных режимах работы огромного числа разновидностей электрического оборудования: люминесцентных ламп, электродвигателей различного назначения, индукционных установок и т. д. — все подобные нагрузки не только потребляют из сети полезную активную мощность, но и являются причинами появления реактивной мощности в протяженных цепях.

И хотя без реактивной мощности многие потребители, содержащие ощутимые индуктивные составляющие, не смогли бы работать в принципе, поскольку им необходима реактивная мощность, как часть полной мощности, реактивная мощность зачастую фигурирует как вредная чрезмерная нагрузка по отношению к электрическим сетям.

Вред от реактивной мощности без компенсации

В общем и целом, когда объем реактивной мощности в сети становится значительным, понижается напряжение в сети, такое положение дел весьма характерно для энергосистем с дефицитом активной составляющей, — там всегда напряжение в сети ниже номинала. И тогда недостающая активная мощность поступает из соседних энергосистем, в которых на данный момент генерируется чрезмерное количество электроэнергии.

Но такие системы, которые всегда требуют пополнений за счет соседей, всегда получаются в итоге неэффективными, а ведь их можно легко превратить в эффективные, достаточно создать условия для генерации реактивной мощности прямо на месте, в специально приспособленных компенсирующих устройствах, подобранных для активно-реактивных нагрузок данной энергосистемы.

Дело в том, что реактивную мощность не обязательно генерировать на электростанции генератором, вместо этого ее можно получать в компенсирующей установке (в конденсаторе, синхронном компенсаторе, в статическом источнике реактивной мощности), расположенной на подстанции.

Компенсация реактивной мощности сегодня является не только ответом на вопросы об энергосбережении и о способе оптимизации нагрузок на сеть, но и ценным инструментом влияния на экономику предприятий. Ведь конечная стоимость любой производимой продукции формируется не в последнюю очередь из расходуемой электроэнергии, которая будучи снижена — уменьшит себестоимость продукции. К такому выводу пришли аудиторы и специалисты по энергоресурсам, что побудило многие компании прибегнуть к расчету и установке систем компенсации реактивной мощности.

Для компенсации реактивной мощности индуктивной нагрузки — подбирают определенной емкости конденсатор, в итоге потребляемая непосредственно от сети реактивная мощность снижается, она потребляется теперь от конденсатора. Другими словами, коэффициент мощности потребителя (с конденсатором) повышается.

Активные потери теперь становятся не более 500 мВт на 1 кВар, при этом движущиеся части у установок отсутствуют, шума нет, а эксплуатационные затраты мизерны. Установить конденсаторы можно в принципе в любой точке электросети, а мощность компенсации подбирается индивидуально. Установка производится в металлических шкафах или в настольном исполнении.

Способы компенсации реактивной мощности в системах электроснабжения

В зависимости от схемы подключения конденсаторов к потребителю, есть несколько видов компенсации: индивидуальная, групповая и централизованная.

При индивидуальной компенсации конденсаторы (конденсатор) подключаются прямо к месту возникновения реактивной мощности, то есть свой конденсатор(ы) — к асинхронному двигателю, отдельный — к газоразрядной лампе, индивидуальный — к сварочному аппарату, личный конденсатор — для индукционной печи, для трансформатора и т.д. Здесь от реактивных токов разгружаются подводящие провода к каждому конкретному потребителю.

Групповая компенсация подразумевает подключение одного общего конденсатора или общей группы конденсаторов сразу к нескольким потребителям со значительными индуктивными составляющими. В этом случае постоянная одновременная работа нескольких потребителей сопряжена с циркуляцией общей реактивной энергии между потребителями и конденсаторами. Линия подводящая электроэнергию к группе потребителей окажется разгружена.

Централизованная компенсация предполагает установку конденсаторов с регулятором в главном или групповом распределительном щите. Регулятор оценивает в режиме реального времени текущее потребление реактивной мощности, и оперативно подключает и отключает необходимое количество конденсаторов. В итоге потребляемая от сети суммарная мощность всегда сводится к минимуму в соответствии с мгновенной величиной требуемой реактивной мощности.

Каждая установка компенсации реактивной мощности включает в себя несколько ветвей конденсаторов, несколько ступеней, которые формируются индивидуально для той или иной электросети, в зависимости от предполагаемых потребителей реактивной мощности. Типичные размеры ступеней: 5; 10; 20; 30; 50; 7,5; 12,5; 25 кВар.

Для получения больших ступеней (100 и более кВар) — объединяют параллельно несколько небольших. В результате нагрузки на сети снижаются, токи включения и сопровождающие их помехи уменьшаются. В сетях с большим количеством высших гармоник сетевого напряжения, конденсаторы компенсирующих установок защищают дросселями.

Выгоды от компенсации реактивной мощности

Автоматические компенсирующие установки дают ряд преимуществ оборудованной ими сети:

снижают загрузку трансформаторов;

упрощают требования к сечению проводов; позволяют больше нагрузить электрические сети, чем это было возможно без компенсации;

устраняют причины для снижения напряжения сети, даже если потребитель присоединен протяженными проводами;

повышают КПД мобильных генераторов на жидком топливе;

Энергосбережение при компенсации реактивной мощности у потребителей

Статья подготовлена редакцией бюллетеня «ЭНЕРГОСОВЕТ»

Введение

В зависимости от вида используемого оборудования нагрузка бывает следующая: активная, индуктивная и емкостная. Потребитель в повседневной практике обычно включает в работу лампы накаливания, электронагреватели и т.д. (активная нагрузка) и электродвигатели, распределительные трансформаторы, люминесцентные лампы и т.д. (индуктивная нагрузка).

Активная составляющая мощности полезно используется, превращаясь в механическую, световую и другие виды энергии. Реактивная составляющая мощности не выполняет полезной работы, она служит для создания магнитных полей в индуктивных приемниках, при этом электроэнергия, запасаемая в каждом индуктивном элементе, распространяется по сети, не рассеиваясь в активных элементах, а совершая колебательные движения (от нагрузки к генератору и обратно).

Показателем потребления реактивной мощности Q является коэффициент мощности cosφ=P/S, который показывает соотношение активной мощности Р и полной мощности S. Полная мощность, в свою очередь, это .

Для чего нужна компенсация реактивной мощности в распределительных электрических сетях

Активная мощность вырабатывается только генераторами электрических станций. Реактивная мощность вырабатывается генераторами электрических станций (синхронными двигателями станций в режиме перевозбуждения), а также компенсирующими устройствами (например, батареями конденсаторов).

Передача реактивной мощности от генераторов по электрической сети к потребителям (индукционным приемникам энергии) вызывает в сети затраты активной мощности в виде потерь и дополнительно загружает элементы электрической сети, снижая их общую пропускную способность.

Так, например, генератор с номинальной мощностью 1250 кВА при номинальном коэффициенте мощности cosφ=0,8 может отдать потребителю активную мощность, равную 1250×0,8=1000 кВт. Если генератор будет работать с соsφ=0,6, то в сеть будет отдаваться активная мощность равная 1250×0,6=750 кВт (активная мощность недоиспользуется на четверть).

Поэтому, как правило, увеличение выдачи реактивной мощности генераторами станций с целью доставки ее потребителям нецелесообразно. Наибольший экономический эффект достигается при размещении компенсирующих устройств (генерации реактивной мощности) вблизи потребляющих реактивную мощность индукционных приемников энергии.

Индукционные приемники энергии или потребители реактивной мощности

  • Трансформатор. Он является одним из основных звеньев в передаче электроэнергии от источника электрической энергии до потребителя и предназначен для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока другого напряжения при неизменной частоте и без существенных потерь мощности.
  • Асинхронный двигатель. Асинхронные двигатели наряду с активной мощностью потребляют до 65% реактивной мощности энергосистемы.
  • Индукционные печи. Это крупные электроприемники, требующие для своего действия большое количество реактивной мощности. Индукционные печи промышленной частоты часто используются для плавки металлов.
  • Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей. Данные установки широко применяются на промышленных предприятиях и железнодорожном транспорте, использующем постоянный ток.
  • Социально-бытовая сфера. Увеличение числа различных электроприводов, стабилизирующих и преобразовательных устройств, применение полупроводниковых преобразователей приводит к росту потребляемой реактивной мощности, а это, в свою очередь, влияет на работу других электроприемников, сокращает срок их службы, создает дополнительные потери электроэнергии. Современные люминесцентные светильники, которые все шире применяются в квартирах и офисах, также являются потребителями реактивной мощности.

К чему приводит отсутствие компенсации реактивной мощности у абонентов

  • У трансформаторов при уменьшении cosφ уменьшается пропускная способность по активной мощности вследствие увеличения реактивной нагрузки.
  • Увеличение полной мощности при снижении cosφ приводит к возрастанию тока и, следовательно, потерям мощности, которые пропорциональны квадрату тока.
  • Увеличение тока требует повышения сечений проводов и кабелей, растут капитальные затраты на электрические сети.
  • Увеличение тока при снижении cosφ ведет к увеличению потери напряжения во всех звеньях энергосистемы, что вызывает понижение напряжения у потребителей.
  • На промышленных предприятиях понижение напряжения нарушает нормальную работу электроприемников. Снижается частота вращения электродвигателей, что приводит к снижению производительности рабочих машин, уменьшается производительность электрических печей, ухудшается качество сварки, снижается световой поток ламп, уменьшается пропускная способность заводских электрических сетей, а как итог — ухудшается качество продукции.

Оборудование для решения проблем компенсации реактивной мощности у потребителей

Компенсировать реактивную мощность возможно синхронными компенсаторами, косинусными конденсаторами (конденсаторными установками) (рис.), шунтирующими реакторами, фильтрами высших гармоник, статическими тиристорными компенсаторами. Применение оборудования для компенсации реактивной мощности полностью зависит от места и цели его установки.

Конденсаторные батареи предназначены для выдачи реактивной мощности в систему. Снижение перетоков реактивной мощности от генератора к нагрузке в сети приводит к снижению потерь активной энергии, снижению потерь напряжения.

Статические тиристорные компенсаторы могут работать как на выдачу, так и на потребление реактивной мощности. В электрических сетях они требуются для оптимизации режимов работы с целью повышения пропускной способности и устойчивости линий электропередачи, стабилизации напряжения в узлах нагрузки, уменьшения потерь электроэнергии и повышения ее качества.

Шунтирующие реакторы используются для компенсации емкостной реактивной мощности, генерируемой протяженными слабонагруженными линиями передач.

Фильтрокомпенсирующие устройства предназначены для снижения гармонических искажений напряжения и компенсации реактивной мощности нагрузок потребителей в сетях электроснабжения промышленных предприятий и в электрических сетях.

Синхронный компенсатор представляет собой синхронную машину, работающую в режиме двигателя без активной нагрузки и генерирующую в сеть реактивную мощность. Синхронные компенсаторы применяют для регулирования энергетических систем, для поддержания напряжения, снижения потерь электроэнергии в сетях, увеличения пропускной способности и обеспечения устойчивости энергосистем.

Выводы

При проведении мероприятий по энергосбережению должны рассматриваться механизмы компенсации реактивной мощности непосредственно в индукционных приемниках энергии или у потребителей, потому что реактивная мощность, как и активная, учитывается в тарифе за электроэнергию, за рост ее потребления платит абонент.

Ознакомьтесь так же:  Рассчитать осаго в туле

В распределительных сетях коммунально-бытовых потребителей, содержащих преимущественно однофазную нагрузку, устройства компенсации реактивной мощности применяются крайне редко, но расход электроэнергии в жилом секторе увеличивается, поэтому рассмотрение установки устройств компенсации у таких абонентов становится актуальной темой.

Посмотреть данную технологию более подробно,
Вы можете в Каталоге энергосберегающих технологий

Компенсация реактивной мощности

Реактивная мощность – это технические потери электроэнергии, вызванные электромагнитными процессами в сетях. Недостаток её вызывает повышенный нагрев проводников и создает избыточную нагрузку на сеть, в результате чего источник электроэнергии работает в усиленном режиме. Если средства компенсации мощности не предусмотрены, то за потребление реактивной энергии из сети приходится переплачивать значительные суммы.

Существенные реактивные нагрузки становятся причиной понижения напряжения в электросети и ухудшения качества электропитания. Помимо того, чрезмерно нагружаются линии электропередач и трансформаторное оборудование, в результате чего увеличиваются капитальные затраты на обустройство и эксплуатацию электрораспределительных станций.

Исторический обзор решений для динамической компенсации реактивной мощности с начала применения переменного тока для передачи электроэнергии до наших дней

Передача электрической энергии с использованием переменного тока началась еще в конце 19 века, заменяя существовавшие небольшие локальные системы постоянного тока. При расширении локальных систем энергоснабжения и обеспечении передачи на дальние расстояния возникали различные проблемы с управлением напряжением и стабильностью, связанные в первую очередь с небалансом реактивной мощности в системах. Для управления напряжениями стационарной системы в основном использовалась коммутируемая компенсация реактивной мощности (шунтирующие конденсаторы и шунтирующие реакторы). Динамический способ основывался на вращающихся машинах, например синхронных компенсаторах.

В середине 60-х годов 20 века появились первые статические компенсирующие устройства реактивной мощности, то есть реакторы, управляемые постоянным током (ртутные вентили) и устройства, управляемые тиристорами (конденсаторы с тиристорным управлением, реакторы с тиристорным управлением).Малое время отклика, низкие потери и меньшие требования к техническому обслуживанию сняли многие ограничения, присущие вращающимся машинам и устройствам, управляемым постоянным током. Оценка рабочих потерь имеет своим результатом всё большее увеличение использования статических конденсаторных установок реактивной мощности, состоящих из комбинаций ветвей конденсаторов и реакторов с тиристорным управлением. Эти шунтирующие устройства совместно с последовательными конденсаторами с тиристорным управлением составили основу гибких систем передачи переменного тока (FACTS). FACTS позволяет более эффективно использовать системы передачи благодаря улучшенному динамическому управлению напряжением системы с одной стороны и более высокой пропускной способностью с другой стороны. В системах передачи переменного тока в настоящее время установлены статические конденсаторные установки реактивной мощности общей мощностью более 100 000 МВА.

В устройствах FACTS стали использоваться новые силовые электронные приборы (GTO, IGCT, IGBT), которые позволяют использовать преобразователи тока и напряжения для обеспечения быстродействующей компенсации реактивной мощности. На основе дальнейшего развития систем управления, совершенствования полупроводниковых приборов и новых технологий преобразователей напряжения в настоящее время компенсация реактивной мощности является ключевым фактором для надёжной передачи энергии переменного тока. В данной статье вашему вниманию предлагается обзор положений в области систем передачи от начала применения первых УКРМ до существующего в настоящее время положения. Также сравниваются ранние решения и современные устройства, приводятся основные факторы и этапы совершенствования установок и обсуждаются преимущества современных устройств.

Передача энергии переменного тока началась в конце 19 века. Развитие шло от низких уровней напряжения и ограниченных районов до больших расстояний, высоких мощностей и всё более возрастающего напряжения передачи. На рис. 1 приводится примерная картина возрастания напряжения систем передачи от года к году.

Генерация электрической энергии и её потребители обычно не находятся близко друг от друга. Большие города и большие промышленные регионы часто получают электроэнергию от источников, находящихся на большом расстоянии. Составляющие системы и нагрузка включают в себя источники реактивной мощности (конденсаторы и катушки индуктивности), которые оказывают влияние на профиль напряжения сети и стабильность системы. Линии передачи высоковольтных систем (735 кВ) могут иметь до 200 Мвар емкостной мощности на длину 100 км. Кабельные соединения могут давать даже большую реактивную мощность. Большие нагрузки, содержащие электрические дуговые печи или мощные приводы, могут иметь до 100 Мвар индуктивной реактивной мощности. Без соответствующей компенсации реактивной мощности в длинных линиях передачи могут наступить критические условия работы системы из-за сильных колебаний напряжения и проблем со стабильностью. Эти проблемы могут быть решены с помощью схем параллельной и последовательной компенсации.

Активная мощность

Если нагрузка чисто резистивная, без индуктивных или емкостных компонентов (реактивной мощности), например, электрический нагреватель, кривые напряжения и тока пересекают координатную ось (проходят через ноль) в одной точке (рис. 1.1).

В этом случае говорят, что напряжение и ток находятся «в фазе». Точки кривой мощности (P) рассчитывается как произведение мгновенных значений напряжения (V) и тока (I). Эта кривая имеет частоту в 2 раза выше частоты напряжения питания и полностью находится в положительной области, так как произведение двух отрицательных чисел является положительным числом, так же, как, естественно, произведение двух положительных чисел.

Рис. 1.1. Кривые напряжения, тока и мощности для чисто резистивной нагрузки (φ = 0°)

Активная или полезная мощность определяется как составляющая мощности, которая преобразуется в другую форму (например, тепло, свет, механическую энергию) и регистрируется счётчиком электроэнергии. При чисто резистивной или омической нагрузке она вычисляется путём перемножения эффективных значений напряжения [V] и тока [I]:

Активная и реактивная мощность

На практике, однако, чисто резистивные нагрузки не являются типичными, обычно также имеется и индуктивная составляющая. Это относится ко всем потребляющим электроэнергию устройствам, принцип работы которых основан на использовании магнитного поля, к примеру, электродвигателям, дросселям, трансформаторам. Также реактивный ток необходим для процессов коммутации в силовых преобразователях. Ток, используемый для создания и изменения магнитного поля, не рассеивается, а циркулирует туда и обратно как реактивный ток между генератором и потребителем.

Рис. 1.2. Напряжение, ток и мощность при резистивно-индуктивной нагрузке (φ = 45°)

Как показано на рисунке 1.2, кривые напряжения и тока уже не проходят через ноль в одной точке, а имеется смещение фазы. При индуктивной нагрузке ток отстаёт от напряжения, а при емкостной – ток опережает напряжение. При расчёте мгновенных значений мощности по формуле (P) = (V)·(I) теперь получаются отрицательные значения, если один из множителей отрицательный.

В этом примере фазовый сдвиг φ = 45°. Это соответствует индуктивному cosφ = 0,707. Как видим, часть кривой мощности находится в отрицательной области.

Активная мощность в этом случае определяется по формуле:

P (Вт) = V (В) · I (А) · cosφ

Реактивная мощность

Чисто индуктивная реактивная мощность потребляется двигателями и трансформаторами, работающими без нагрузки (если пренебречь потерями в меди, железе и, при их наличии, потерями на трение). Можно считать, что силовые конденсаторы RTR ENERGIA имеют чисто емкостную реактивную мощность, так как они имеют очень низкие потери (менее 0,05%).

Рис. 1.3. Напряжение, ток и мощность при чисто реактивной нагрузке (φ = 90°)

Если напряжение и ток имеют сдвиг по фазе на 90°, одна половина кривой мощности находится в положительной области, а другая – в отрицательной (рис. 1.3). Активная мощность равна нулю, так как положительная и отрицательная области уравновешивают друг друга.

Реактивная мощность определяется как мощность, которая циркулирует между генератором и нагрузкой на частоте питающего напряжения для обеспечения нарастания и спада магнитного поля.

Q (вар) = V (В) · I (А) · sinφ

Полная мощность

Значение полной мощности является основным параметром при выборе номинальных параметров сетей энергоснабжения. На полную мощность системы должны рассчитываться генераторы, трансформаторы, распределительные устройства, предохранители, автоматические выключатели и проводники.

Значение полной мощности – это результат произведения значений напряжения и тока без учёта фазового сдвига.

Полная мощность определяется как векторная сумма активной и реактивной мощностей.

Рис. 1.4. Треугольник мощностей

Коэффициент мощности (cosφ и tgφ)

Удобным параметром для определения активного и реактивного компонентов мощности, напряжения и тока является косинус угла сдвига фаз (фазовый угол) между током и напряжением. В электротехнической практике этот параметр получил название «коэффициент мощности».

Коэффициент мощности (cos) фазового угла φ при полной нагрузке маркируется на электрических машинах.

Тангенс (tg) фазового угла φ удобен для выражения отношения реактивной мощности к активной.

Два следующих выражения показывают соотношение между косинусом и тангенсом фазового угла φ.

Так как система распределения электроэнергии должна быть рассчитана на полную мощность, предпринимаются усилия для снижения её значения. Если параллельно потребителю электроэнергии установлены конденсаторы соответствующей величины, реактивный ток циркулирует между конденсатором и потребителями. Это значит, что этот дополнительный ток не протекает по остальной части распределительной сети. Если, таким способом, достигнут коэффициент мощности, равный единице, через систему распределения протекает только активный ток.

Реактивная мощность QC, скомпенсированная конденсатором, — это разность между индуктивной реактивной мощностью до компенсации Q1 и реактивной мощностью после компенсации Q2, то есть

QC (вар) = P (Вт) · (tgφ1 – tgφ2)

Рис. 1.5. Треугольник мощностей, иллюстрирующий действие компенсации реактивной мощности

Необходимость компенсации реактивной мощности

Реактивный ток, циркулирующий между генератором энергоснабжающей компании и потребителем, преобразуется в тепловую энергию в системе распределения электроэнергии, то есть создаётся дополнительная нагрузка на генераторы, трансформаторы, кабели и распределительное устройство.

Это приводит к потерям электроэнергии и падению напряжения. Если доля реактивного тока высока, имеющиеся сечения проводников не могут полностью использоваться для передачи полезной энергии, возможно, их нужно соответственно увеличить.

С точки зрения энергоснабжающей компании низкий коэффициент мощности приводит к увеличению затрат на инвестиции и обслуживание, и эти дополнительные затраты перекладываются на тех, кто за них ответственен, то есть на потребителей с низким коэффициентом мощности. Поэтому в дополнение к счётчику активной энергии устанавливается счётчик реактивной энергии.

Рис. 1.6. Активная и реактивная мощность в системе распределения электроэнергии без компенсации реактивной мощности

Рис. 1.7. Активная и реактивная мощности в системе распределения электроэнергии c компенсацией реактивной мощности

Преимущества компенсации реактивной мощности

  • Эффективное использование:
    • генераторов (энергоснабжающей компании);
    • трансформаторов;
    • кабельной сети;
    • распределительного устройства.
  • Пониженные потери
  • Меньше падение напряжения

Следовательно — более низкая стоимость электроэнергии!

Выгода применения установки компенсации реактивной мощности

Огромное количество потребителей электроэнергии постоянно нагружает сеть реактивной составляющей потребляемой мощности, причем эта нагрузка постоянно возрастает. Внедрение компенсирующих устройств реактивной мощности позволяет повысить надежность электропитающих сетей и увеличить пропускную способность энергосистемы.

Среди целого ряда преимуществ от применения устройств компенсации реактивной мощности можно выделить пять главных:

Внедрение компенсирующих устройств реактивной мощности дает существенный экономический эффект. Снижение уровня энергопотребления может составить до 40-50% от общего объема. При таких объемах срок окупаемости систем компенсации мощности составит не более одного года.

Увеличение срока службы оборудования

Средства компенсации увеличивают срок службы силовых трансформаторов, поскольку их использование снижает нагрузку на оборудование. Использование установок компенсации также снижает нагрузку на линии передач и нагрев проводов, что позволяет использовать токоведущие жилы меньшего сечения.

Экономия затрат на устройство подводящих электросетей

На этапе проектирования и строительства новых зданий монтаж системы компенсации реактивной мощности позволяет существенно сэкономить на обустройстве распределительной электросети.

Улучшение качества энергоснабжения

Применение средств компенсации реактивной мощности дает возможность подавить сетевые помехи, избежать глубокой просадки напряжения и минимизировать несимметрию фаз. Кроме того, системы компенсации в составе пассивных фильтров позволяют снизить уровень высших гармоник.

Устройство компенсации реактивной мощности позволяет избежать штрафных санкций от поставщика электроэнергии за ухудшение показателей коэффициента мощности.

Поперечная компенсация реактивной мощности

В настоящее время используются коммутируемые конденсаторные установки для поперечной компенсации реактивной мощности и конденсаторные установки с непрерывным управлением. Емкостная мощность линий передачи или кабельной сети частично компенсируется параллельным шунтом из подключенных к линии реакторов, индуктивные нагрузки компенсируются шунтирующими конденсаторами. Линейные реакторы постоянно подключены к линиям передачи, чтобы обеспечить постоянную компенсацию в широком рабочем диапазоне. Шунтирующие конденсаторы обычно разделены на ступени для компенсации промежуточных нагрузок. Непрерывное управление реактивной мощностью ранее было возможно только с помощью регулирования возбуждения генераторов или специальных синхронных конденсаторных установок. Первые устройства статической компенсации строились на основе насыщенных реакторов, следующими были тиристорные установки. Основой последних устройств компенсации реактивной мощности стали преобразователи напряжения, использующие сначала запираемые тиристоры (GTO), а сейчас биполярные транзисторы с изолированным затвором (IGBT).

A. Синхронные компенсаторы

Поведение синхронного компенсатора определяется влиянием МДС возбуждения на реактивную мощность. В некоторых случаях с целью экономии средств для управления реактивной мощностью используются старые генераторы, демонтированные с турбин. Вновь изготовленные синхронные компенсаторы использовались в конкретных местах системы для улучшения профиля напряжения и увеличения мощности короткого замыкания особенно в точке подключения высоковольтных вставок постоянного тока. Время отклика машин было улучшено с внедрением систем возбуждения с управлением с помощью тиристоров. На рис. 2 показана схема подключения синхронного компенсатора к системе высокого напряжения.

На рис. 3 показана вольт-амперная рабочая характеристика. Наклон характеристики зависит от реактивного сопротивления двигателя и его сетевого трансформатора. Изменение опорного напряжения приводит к работе синхронного компенсатора в перевозбуждённом или недовозбуждённом режиме, то есть он отдаёт (как ёмкость) или поглощает (как индуктивность) реактивную мощность. Он реагирует сам, то есть без управляющего воздействия, и обеспечивает поддержание напряжения вне рабочей характеристики в установившемся режиме в условиях переходного процесса.

B. Статические компенсаторы на основе насыщающихся реакторов

Эти первые статические компенсаторы строились из статических (неподвижных) компонентов, то есть конденсаторов и реакторов. Реакторы работали в области насыщения, ограничивая при этом изменения напряжения. На рис. 4 показано устройство такого компенсатора и его рабочие характеристики.

Насыщающийся реактор (SR) обычно выполняется на 9-стержневом стальном магнитопроводе для нейтрализации гармоники третьего порядка. Наклон характеристики SR уменьшается благодаря конденсатору Cs, подключенному последовательно. Параллельно им подключен шунтирующий конденсатор Cp, который обеспечивает емкостной характер устройства. В правой части рис. 4 показана характеристика каждого компонента (SR, Cs и Cp), суммарная характеристика SR и Cs (SR+Cs) и окончательная характеристика SR+Cs+Cp после параллельного подключения Cp. Насыщающиеся статические компенсаторы по существу реагируют на изменения напряжения системы. Регулировка опорного напряжения производится при помощи переключателя ответвлений сетевого трансформатора. Демпфирующие фильтры подключаются параллельно конденсатору Cs для устранения возможности феррорезонанса совместно с защитой от перенапряжения конденсатора. Общий рабочий диапазон может быть установлен ступенчатым переключением шунтирующих конденсаторов. Статический компенсатор нормально работает в условиях симметричного напряжения системы.

Ознакомьтесь так же:  Купить полис осаго в ингосстрах

C. Статические компенсаторы реактивной мощности

Статические конденсаторные установки составлены из статических компонентов (индуктивностей и емкостей), с быстродействующим управлением с помощью полупроводниковых устройств (тиристоров). Преимуществами статических компенсаторов по сравнению с синхронными компенсаторами являются более низкие требования к техническому обслуживанию (нет движущихся частей),простое трёхфазное или однофазное управление, другие опциональные возможности управления, а также меньшая стоимость при тех же номинальных параметрах. На рис. 5 показано типовое устройство статического компенсатора.

Необходимая емкостная мощность для системы может быть установлена в емкостных ветвях, которые могут быть фиксировано подключенными к шине низкого напряжения или коммутируемыми с помощью тиристорных вентилей (конденсаторы с тиристорной коммутацией). Фиксированные ветви обычно настраиваются с помощью последовательных реакторов для фильтрации гармоник. Индуктивная мощность устанавливается в одной фазе или комбинациях трёхфазных реакторов, которые плавно регулируются с помощью тиристорных вентилей. Ветви подключены к высоковольтной системе через специальный трансформатор. Трансформатор изменяет напряжение системы до уровня, оптимального для работы тиристора.

Ветви реакторов с тиристорным управлением (TCR)

Ветви реакторов с тиристорным управлением содержат реакторы, которые управляются по углу с помощью тиристорных ключей. Три однофазные ветви соединяются в треугольник для уменьшения генерации гармоник, кратных трём, при симметричной работе.

Ветви конденсаторов с тиристорной коммутацией (TSC)

Ветви конденсаторов с тиристорной коммутацией содержат конденсаторы и токоограничивающие реакторы и коммутируются с помощью тиристорных ключей. Ветви могут соединяться треугольником или звездой. При соединении звездой один ключ становится лишним и может не приниматься во внимание в одной из трёх фаз. При использовании тиристоров с таким же номинальным током, как для TCR, номинал ветви будет соответственно ниже.

Развитие технологий тиристоров большой мощности создало основу использования электронных устройств большой мощности в энергосистемах.

Процесс совершенствования тиристоров (см. рис. 6) начался в 70-х годах. Токопроводящая способность мощных тиристоров ступенчато возрастала от 800 А (эфф.) до 4000 А (эфф.) при использовании кремниевых подложек с диаметром от 40 до 125 мм. При этом величина максимально допустимого обратного напряжения увеличилась с 1,6 до 8 (10) кВ. Следующий этап дальнейшего увеличения номинальных токов тиристоров ожидается с 2009 г.

Конфигурации статической конденсаторной установки

Вначале в статических конденсаторных установках для соответствия условиям работы различных цепей, управляемых тиристорами, они устанавливались параллельно. Последовательное подключение тиристоров обуславливалось напряжением шины низкого напряжения (обычно до 36 кВ). 12-пульсное подключение использовалось для разделения ветвей, управляемых тиристорами, и уменьшения тока короткого замыкания цепи каждого вентиля, а также чтобы избежать 6-пульсных гармонических искажений в системе. На рис. 7 показан типовой статический компенсатор реактивной мощности в 12-пульсном соединении, использующий только одну ветвь TCR и фиксированную емкостную ветвь (FC).

Конфигурации статических компенсаторов изменялись со временем по мере повышения номинальных токов и в связи с обсуждающимися далее факторами, связанными с потерями, занимаемой площадью и мобильностью.

Величины потерь в статических компенсаторах с конфигурацией TCR/FC показаны на рис.8. Значение потерь не включает в себя нагрузку, потери трансформатора, потери реактора с тиристорным управлением и реактора фильтра, диэлектрические потери конденсаторов, потери в ключах, как в стационарном режиме, так и при переключении, потери в оборудовании охлаждения (трансформатор и вентили) и во вспомогательном оборудовании.

Средняя величина рабочих потерь в статических компенсаторах с конфигурацией TCR/FC составляет около 0,5 – 0,7% номинальной емкостной мощности. На рис. 9 показан график рабочих потерь установки с конфигурацией TCR/TSC/FC.

Средняя величина рабочих потерь в статических компенсаторах конфигурации TCR/TSC/FC составляет около 0,5 – 0,7% номинальной емкостной мощности компенсатора. Стоимость конфигурации компенсатора TCR/TSC/FC выше, чем конфигурации TCR/FC за счёт дополнительной стоимости конденсаторов с тиристорной коммутацией. Из-за того, что статический компенсатор должен работать основную часть времени при нуле на выходе, чтобы быть готовым к быстрому поддержанию напряжения при нештатных ситуациях в системе, стоимость потерь должна определяться в рабочей области.

Возможна следующая методика оценки:

Pveval = Pv1 x t1 + Pv2 x t2 + … + Pvn x tn, где
Pveval – значение общих рабочих потерь,
Pv1, 2, n – средние потери в рабочем диапазоне 1, 2, n для периодов работы t1, t2, tn.

Суммарное время работы – до 8760 часов за год. Стоимость потерь определяется умножением Pveval на конкретную стоимость потерь ($/кВт) у потребителя, величина которой зависит от поставщика электроэнергии от 1500 до 8000 $/кВт.

Общая стоимость компенсации реактивной мощности состоит из стоимости инвестиций (составные части, установка) и стоимости потерь. Решение статического компенсатора конфигурации TCR/TSC/FC может оказаться более экономичным, чем более простое – TCR/FC. Последние установки статических компенсаторов реактивной мощности в основном имели конфигурации TCR/TSC/FC.

Несмотря на то, что конфигурации TCR/TSC/FC требуют больше места, так как имеют больше ветвей, требования по площади размещения могут быть уменьшены более чем на 50% (в настоящее время – до 8 м2/Мвар) по сравнению с ранними конструкциями. Требования по занимаемой площади также могут использоваться в качестве критерия оценки.

Процессы либерализации и приватизации могут приводить к изменениям потоков в некоторых высоковольтных системах в течение короткого времени. Некоторые ранее установленные конденсаторные установки реактивной мощности могут оказаться больше не эффективными в данном месте, и может потребоваться их установка в другой точке системы. Возможность перемещения установки также может быть использована в качестве критерия при оценке общей стоимости.

Переход от аналогового управления к цифровому

Со временем происходил переход от чисто аналоговых систем управления и защиты к цифровым системам. Преимуществами цифровых систем являются отсутствие дрейфа параметризации и сигнализации, программное управление функциональностью, графическое конфигурирование, самодиагностика и модульное построение. Современные системы управления конденсаторных установок имеют многообразные функции и позволяют полностью интегрироваться в систему. На рис. 10 показана схема блока управления, включающего в себя различные функции управления и замкнутую петлю обратной связи.

Выделенная на рисунке часть схемы показывает прохождение сигнала управления напряжением. Сигнал управления напряжением может быть модулирован быстродействующим сигналом управления для подавления качаний мощности (POD) в случае серьёзных проблем со стабильностью после аварии системы. Замедленное действие тракта управления реактивной мощностью помогает статической конденсаторной установке оперировать из заданной оптимальной рабочей точки, например 0 Мвар. Из этой оптимальной рабочей точки конденсаторная установка сможет быстро отдавать или поглощать реактивную мощность в критических условиях работы системы.

D. Преобразователи напряжения

Идея применить самокоммутирующиеся преобразователи для статической компенсации реактивной мощности долго обсуждалась перед созданием в 70-е годы 20 века первой конструкции на тиристорах со специальной схемой для ускорения коммутации. В принципе, могут быть использованы преобразователи с фиксированным постоянным напряжением или током. Тем не менее, при поддержке других отраслей, например, систем электроприводов, стал доступен широкий ряд полупроводниковых приборов с управляемым запиранием и полным максимальным обратным напряжением. В первых экспериментальных образцах статических компенсаторов STATCOM на базе преобразователей напряжения были использованы запираемые тиристоры (GTO).

На векторной диаграмме, на рис. 11, показан емкостной характер работы. Фаза и амплитуда тока могут регулироваться изменением VVSC. Для данного напряжения системы VN регулируется напряжение преобразователя VVSC, чтобы получить ток IN, который может находиться внутри зоны, обозначенной «максимальный ток преобразователя». Если пренебречь потерями, можно считать, что ток опережает напряжение или отстаёт от напряжения на 90°. Значение максимального тока симметрично при опережении или отставании по фазе. В широком диапазоне изменения напряжения системы ток может оставаться неизменным. Эта функция графически представлена на рис. 12, где сравниваются вольт-амперные характеристики STATCOM и статические конденсаторные установки. В условиях низкого напряжения STATCOM может обеспечить большую мощность, чем СКРМ, а при перенапряжении максимальная выходная мощность STATCOM меньше.

Развитие технологий преобразователей напряжения для компенсации реактивной мощности было нацелено на следующие задачи: улучшение поддержания работы системы в случае понижения напряжения, повышение скорости отклика при компенсации фликеров, создание более компактных и мобильных конструкций, уменьшение взаимного влияния гармоник с системой энергоснабжения. В настоящее время предлагается много технических решений, которые сводятся к концепции мультипреобразования, высоковольтным ШИМ-преобразователям или многоуровневым преобразователям. Причины сложившейся ситуации и перспективы можно увидеть из истории развития. В первых преобразователях напряжения количество последовательно соединённых запираемых тиристоров было ограничено в основном тем, что нельзя было обеспечить равномерное распределение напряжений между отдельными тиристорами. Это приводило к тому, что выходная мощность одиночного преобразователя была мала. Также высокие потери при коммутации препятствовали эффективному использованию широтно-импульсной модуляции (ШИМ) для получения синусоидальной формы тока. Эти ограничения были впервые преодолены сочетанием нескольких преобразователей при использовании подавления гармоник с помощью магнитных цепей.

Позднее появились полупроводниковые приборы с улучшенной коммутационной способностью. С внедрением коммутируемых по затвору запираемых тиристоров (IGCT) были созданы мощные преобразователи с номинальными мощностями до 10 МВА. С использованием высоковольтных биполярных транзисторов постоянного тока с изолированным затвором (IGBT) были созданы вентили на 300 кВ, что дало возможность реализации одиночных преобразователей диапазона 100 МВА.

В преобразователях на IGBT выходной синусоидальный ток формируется с помощью ШИМ с высокой частотой коммутации (в килогерцовом диапазоне). Кроме того факта, что высокая частота коммутации ведёт к значительным потерям преобразователя, наличие крутых фронтов высокого напряжения dv/dt требует применения специального оборудования для предотвращения воздействия высокой частоты и принятия мер по ограничению электромагнитных помех.

Дальнейшее увеличение предложения полупроводников высокой мощности и эффективных систем управления позволяют сегодня преодолевать проблемы, связанные с высокой частотой коммутации высоковольтных вентилей. Системы преобразования, появившиеся в последнее время, имеют модульное построение и генерируют выходное напряжение переменного тока, близкое к синусоидальному с большим количество уровней напряжения (многоуровневые преобразователи).

На рис. 13 показана конфигурация однофазного преобразователя, используемого для компенсации реактивной мощности. Три таких устройства могут быть соединены в треугольник. Напряжения и токи многоуровневых преобразователей аналогичны напряжениям и токам синхронных компенсаторов, но многоуровневые преобразователи имеют намного меньшие времена отклика. Благодаря сниженному взаимному влиянию гармоник с подключенной системой многоуровневые преобразователи на преобразователях напряжения по сравнению с другими типами статических компенсаторов имеют меньше компонентов и проще встраиваются в системы энергоснабжения. Потери энергии многоуровневого преобразователя значительно меньше по сравнению с преобразователями других типов, но всё-таки несколько больше, чем у компенсаторов на тиристорах.

На сегодняшний день общая мощность установленных статических компенсаторов составляет около 110 000 Мвар, из них мощность преобразователей напряжения, применяемых для систем передачи, достигает около 4000 Мвар.

Продольная компенсация реактивной мощности

Электростанции по экономическим причинам не строятся близко к нагрузкам, то есть выработанная энергия должна транспортироваться на большие расстояния. На рис. 14 показана зависимость напряжения на конце линии 345 кВ от передаваемой активной мощности для трёх величин длины линии (100, 200 и 300 км). Натуральная мощность этой линии – 410 МВт.

Чем длиннее линия, тем меньше максимальная передаваемая мощность. Электрическая длина линии может быть увеличена при установке последовательных конденсаторов. Этот принцип раньше использовался для компенсации импеданса трансформаторов, чтобы улучшить параметры напряжения при больших изменениях нагрузки, подключенной на стороне низкого напряжения.

A. Фиксированные последовательные конденсаторы

Последовательные конденсаторы могут быть установлены на обоих концах линии или в средней точке. Основное внимание уделяется профилю напряжения вдоль линии при передаче электроэнергии. Степень компенсации обычно не превышает 70% импеданса линии. Фиксированные последовательные конденсаторы могут быть установлены как один основной блок или в субблоках, чтобы обеспечить возможность ступенчатой адаптации степени компенсации для различных условий работы системы.

B. Последовательные конденсаторы с тиристорным управлением

В некоторых приложениях часть фиксированных последовательных конденсаторов может быть дополнена параллельными реакторами с тиристорным управлением, которые допускают плавное регулирование в пределах определённого диапазона угла управления. На рис. 15 показана установка с такими последовательными конденсаторами с тиристорным управлением и её возможная характеристика управления импедансом.

Последовательные конденсаторы с тиристорным управлением имеют ограниченный рабочий диапазон угла управления от около 150° до 180°. Продолжительность работы в индуктивном диапазоне невозможна из-за слишком больших токов тиристоров. Допустима только работа в режиме полной проводимости реактора, управляемого тиристором.

C. Преобразователи напряжения

Установки STATCOM с преобразователями напряжения, установленные последовательно в линию, формируют унифицированный контроллер потока мощности. В других станциях такие последовательно подключенные конфигурации преобразователей напряжения устанавливаются для целей распределения потоков мощности или нагрузки между параллельными линиями (трансформируемый статический компенсатор). Преимуществом установки последовательной компенсации реактивной мощности с преобразователем напряжения является возможность управления в индуктивной области.

Динамическая компенсация реактивной мощности с управлением при помощи силовой электроники обеспечивает улучшение работы систем передачи и теперь является признанным средством компенсации реактивной мощности среди других устройств.

Большое разнообразие технологий FACTS обеспечивает надёжные решения для большинства имеющихся и возникающих вновь требований при передаче электроэнергии.

Комбинация динамических и обычных коммутируемых устройств компенсации часто приводит к экономичным решениям для работы в установившемся режиме и при переходных процессах в электрической системе. FACTS на основе преобразователей напряжения будут использоваться более широко, особенно в диапазоне малых и средних мощностей.

В ближайшем будущем, вероятно, для преодоления имеющихся ограничений при работе систем передачи потребуется большее количество конденсаторных установок компенсации реактивной мощности, которые рассматриваются как важное средство для повышения стабильности системы и защиты от перебоев энергоснабжения.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *